Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Data ; 11(1): 24, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38177193

RESUMEN

Scientific bottom-trawl surveys are ecological observation programs conducted along continental shelves and slopes of seas and oceans that sample marine communities associated with the seafloor. These surveys report taxa occurrence, abundance and/or weight in space and time, and contribute to fisheries management as well as population and biodiversity research. Bottom-trawl surveys are conducted all over the world and represent a unique opportunity to understand ocean biogeography, macroecology, and global change. However, combining these data together for cross-ecosystem analyses remains challenging. Here, we present an integrated dataset of 29 publicly available bottom-trawl surveys conducted in national waters of 18 countries that are standardized and pre-processed, covering a total of 2,170 sampled fish taxa and 216,548 hauls collected from 1963 to 2021. We describe the processing steps to create the dataset, flags, and standardization methods that we developed to assist users in conducting spatio-temporal analyses with stable regional survey footprints. The aim of this dataset is to support research, marine conservation, and management in the context of global change.


Asunto(s)
Biodiversidad , Peces , Animales , Ecosistema , Explotaciones Pesqueras , Océanos y Mares
2.
Microbiome ; 11(1): 271, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38053218

RESUMEN

BACKGROUND: Climate change has accelerated the occurrence and severity of heatwaves in the Mediterranean Sea and poses a significant threat to the octocoral species that form the foundation of marine animal forests (MAFs). As coral health intricately relies on the symbiotic relationships established between corals and microbial communities, our goal was to gain a deeper understanding of the role of bacteria in the observed tissue loss of key octocoral species following the unprecedented heatwaves in 2022. RESULTS: Using amplicon sequencing and taxon-specific qPCR analyses, we unexpectedly found that the absolute abundance of the major bacterial symbionts, Spirochaetaceae (C. rubrum) and Endozoicomonas (P. clavata), remained, in most cases, unchanged between colonies with 0% and 90% tissue loss. These results suggest that the impairment of coral health was not due to the loss of the main bacterial symbionts. However, we observed a significant increase in the total abundance of bacterial opportunists, including putative pathogens such as Vibrio, which was not evident when only their relative abundance was considered. In addition, there was no clear relation between bacterial symbiont loss and the intensity of thermal stress, suggesting that factors other than temperature may have influenced the differential response of octocoral microbiomes at different sampling sites. CONCLUSIONS: Our results indicate that tissue loss in octocorals is not directly caused by the decline of the main bacterial symbionts but by the proliferation of opportunistic and pathogenic bacteria. Our findings thus underscore the significance of considering both relative and absolute quantification approaches when evaluating the impact of stressors on coral microbiome as the relative quantification does not accurately depict the actual changes in the microbiome. Consequently, this research enhances our comprehension of the intricate interplay between host organisms, their microbiomes, and environmental stressors, while offering valuable insights into the ecological implications of heatwaves on marine animal forests. Video Abstract.


Asunto(s)
Antozoos , Microbiota , Animales , Bacterias/genética , Antozoos/microbiología , Temperatura , Bosques , Arrecifes de Coral
3.
Glob Chang Biol ; 29(22): 6159-6162, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37681400

RESUMEN

Gorgonian population after the 2022 mass mortality event (MME) in the Calanques National Park. The year 2022 was marked by a historic gorgonian MME. This study describes the consequences for the red gorgonian (Paramuricea clavata) and red coral (Corallium rubrum) populations in the Calanques National Park (Marseille, France).

4.
Nature ; 621(7978): 324-329, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37648851

RESUMEN

Marine heatwaves have been linked to negative ecological effects in recent decades1,2. If marine heatwaves regularly induce community reorganization and biomass collapses in fishes, the consequences could be catastrophic for ecosystems, fisheries and human communities3,4. However, the extent to which marine heatwaves have negative impacts on fish biomass or community composition, or even whether their effects can be distinguished from natural and sampling variability, remains unclear. We investigated the effects of 248 sea-bottom heatwaves from 1993 to 2019 on marine fishes by analysing 82,322 hauls (samples) from long-term scientific surveys of continental shelf ecosystems in North America and Europe spanning the subtropics to the Arctic. Here we show that the effects of marine heatwaves on fish biomass were often minimal and could not be distinguished from natural and sampling variability. Furthermore, marine heatwaves were not consistently associated with tropicalization (gain of warm-affiliated species) or deborealization (loss of cold-affiliated species) in these ecosystems. Although steep declines in biomass occasionally occurred after marine heatwaves, these were the exception, not the rule. Against the highly variable backdrop of ocean ecosystems, marine heatwaves have not driven biomass change or community turnover in fish communities that support many of the world's largest and most productive fisheries.


Asunto(s)
Biomasa , Calor Extremo , Peces , Animales , Europa (Continente) , Explotaciones Pesqueras/estadística & datos numéricos , Peces/clasificación , Peces/fisiología , Calor Extremo/efectos adversos , América del Norte , Biodiversidad
5.
Sci Total Environ ; 867: 161303, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36592913

RESUMEN

To assess the risk of pesticide mixtures in lagoon waters, this study adopted a multi-step approach using integrative passive samplers (POCIS) and concentration addition (CA) toxicological models. Two French Mediterranean lagoons (Thau and Or) were monitored for a range of 68 pesticides continuously over a period of a year (2015-16). The findings revealed mixtures of dissolved pesticides with varying composition and levels over the year. The Or site contained more pesticides than Thau site (37 vs 28 different substances), at higher concentrations (0.1-58.6 ng.L-1 at Or vs <0.1-9.9 at Thau) and with overall higher detection frequencies. All samples showed a potential chronic toxicity risk, depending on the composition and concentrations of co-occurring pesticides. In 74 % of the samples, this pesticide risk was driven by a few single substances (ametryn, atrazine, azoxystrobin, carbendazim, chlorotoluron, irgarol, diuron and metolachlor) and certain transformation products (e.g. DPMU and metolachlor OA/ESA). Individually, these were a threat for the three taxa studied (phytoplankton, crustaceans and fish). Yet even a drastic reduction of these drivers alone (up to 5 % of their current concentration) would not eliminate the toxicity risks in 56 % of the Or Lagoon samples, due to pesticide mixtures. The two CA-based approaches used to assess the combined effect of these mixtures, determined chronic potential negative impacts for both lagoons, while no acute risk was highlighted. This risk was seasonal, indicating the importance of monitoring in key periods (summer, winter and spring) to get a more realistic picture of the pesticide threat in lagoon waters. These findings suggest that it is crucial to review the current EU Water Framework Directive's risk-assessment method, as it may incorrectly determine pesticide risk in lagoons.


Asunto(s)
Plaguicidas , Contaminantes Químicos del Agua , Animales , Acetamidas , Diurona , Monitoreo del Ambiente , Plaguicidas/análisis , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis
6.
Glob Chang Biol ; 27(2): 220-236, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33067925

RESUMEN

Marine biota are redistributing at a rapid pace in response to climate change and shifting seascapes. While changes in fish populations and community structure threaten the sustainability of fisheries, our capacity to adapt by tracking and projecting marine species remains a challenge due to data discontinuities in biological observations, lack of data availability, and mismatch between data and real species distributions. To assess the extent of this challenge, we review the global status and accessibility of ongoing scientific bottom trawl surveys. In total, we gathered metadata for 283,925 samples from 95 surveys conducted regularly from 2001 to 2019. We identified that 59% of the metadata collected are not publicly available, highlighting that the availability of data is the most important challenge to assess species redistributions under global climate change. Given that the primary purpose of surveys is to provide independent data to inform stock assessment of commercially important populations, we further highlight that single surveys do not cover the full range of the main commercial demersal fish species. An average of 18 surveys is needed to cover at least 50% of species ranges, demonstrating the importance of combining multiple surveys to evaluate species range shifts. We assess the potential for combining surveys to track transboundary species redistributions and show that differences in sampling schemes and inconsistency in sampling can be overcome with spatio-temporal modeling to follow species density redistributions. In light of our global assessment, we establish a framework for improving the management and conservation of transboundary and migrating marine demersal species. We provide directions to improve data availability and encourage countries to share survey data, to assess species vulnerabilities, and to support management adaptation in a time of climate-driven ocean changes.


Asunto(s)
Ecosistema , Explotaciones Pesqueras , Animales , Cambio Climático , Peces , Encuestas y Cuestionarios
7.
Sci Rep ; 9(1): 19996, 2019 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-31882755

RESUMEN

Describing how communities change over space and time is crucial to better understand and predict the functioning of ecosystems. We propose a new methodological framework, based on network theory and modularity concept, to determine which type of mechanisms (i.e. deterministic versus stochastic processes) has the strongest influence on structuring communities. This framework is based on the computation and comparison of two networks: the co-occurrence (based on species abundances) and the functional networks (based on the species traits values). In this way we can assess whether the species belonging to a given functional group also belong to the same co-occurrence group. We adapted the Dg index of Gauzens et al. (2015) to analyze congruence between both networks. This offers the opportunity to identify which assembly rule(s) play(s) the major role in structuring the community. We illustrate our framework with two datasets corresponding to different faunal groups and ecosystems, and characterized by different scales (spatial and temporal scales). By considering both species abundance and multiple functional traits, our framework improves significantly the ability to discriminate the main assembly rules structuring the communities. This point is critical not only to understand community structuring but also its response to global changes and other disturbances.

9.
Mol Ecol ; 26(23): 6563-6577, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29087018

RESUMEN

Genetic diversity is crucial for species' maintenance and persistence, yet is often overlooked in conservation studies. Species diversity is more often reported due to practical constraints, but it is unknown if these measures of diversity are correlated. In marine invertebrates, adults are often sessile or sedentary and populations exchange genes via dispersal of gametes and larvae. Species with a larval period are expected to have more connected populations than those without larval dispersal. We assessed the relationship between measures of species and genetic diversity, and between dispersal ability and connectivity. We compiled data on genetic patterns and life history traits in nine species across five phyla. Sampling sites spanned 600 km in the northwest Mediterranean Sea and focused on a 50-km area near Marseilles, France. Comparative population genetic approaches yielded three main results. (i) Species without larvae showed higher levels of genetic structure than species with free-living larvae, but the role of larval type (lecithotrophic or planktotrophic) was negligible. (ii) A narrow area around Marseilles, subject to offshore advection, limited genetic connectivity in most species. (iii) We identified sites with significant positive contributions to overall genetic diversity across all species, corresponding with areas near low human population densities. In contrast, high levels of human activity corresponded with a negative contribution to overall genetic diversity. Genetic diversity within species was positively and significantly linearly related to local species diversity. Our study suggests that local contribution to overall genetic diversity should be taken into account for future conservation strategies.


Asunto(s)
Distribución Animal , Biodiversidad , Variación Genética , Genética de Población , Invertebrados/clasificación , Animales , Organismos Acuáticos/clasificación , Geografía , Larva , Mar Mediterráneo
10.
PLoS One ; 10(10): e0141566, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26505198

RESUMEN

Environmental changes and human activities can have strong impacts on biodiversity and ecosystem functioning. This study investigates how, from a quantitative point of view, simultaneously both environmental and anthropogenic factors affect species composition and abundance of exploited groundfish assemblages (i.e. target and non-target species) at large spatio-temporal scales. We aim to investigate (1) the spatial and annual stability of groundfish assemblages, (2) relationships between these assemblages and structuring factors in order to better explain the dynamic of the assemblages' structure. The Mauritanian Exclusive Economic Zone (MEEZ) is of particular interest as it embeds a productive ecosystem due to upwelling, producing abundant and diverse resources which constitute an attractive socio-economic development. We applied the multi-variate and multi-table STATICO method on a data set consisting of 854 hauls collected during 14-years (1997-2010) from scientific trawl surveys (species abundance), logbooks of industrial fishery (fishing effort), sea surface temperature and chlorophyll a concentration as environmental variables. Our results showed that abiotic factors drove four main persistent fish assemblages. Overall, chlorophyll a concentration and sea surface temperature mainly influenced the structure of assemblages of coastal soft bottoms and those of the offshore near rocky bottoms where upwellings held. While highest levels of fishing effort were located in the northern permanent upwelling zone, effects of this variable on species composition and abundances of assemblages were relatively low, even if not negligible in some years and areas. The temporal trajectories between environmental and fishing conditions and assemblages did not match for all the entire time series analyzed in the MEEZ, but interestingly for some specific years and areas. The quantitative approach used in this work may provide to stakeholders, scientists and fishers a useful assessment for the spatio-temporal dynamics of exploited assemblages under stable or changing conditions in fishing and environment.


Asunto(s)
Biodiversidad , Ecosistema , Peces , Dinámica Poblacional , Animales , Explotaciones Pesqueras , Humanos , Mauritania , Densidad de Población
11.
Biol Lett ; 10(12): 20140698, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25540151

RESUMEN

The desire to predict the consequences of global environmental change has been the driver towards more realistic models embracing the variability and uncertainties inherent in ecology. Statistical ecology has gelled over the past decade as a discipline that moves away from describing patterns towards modelling the ecological processes that generate these patterns. Following the fourth International Statistical Ecology Conference (1-4 July 2014) in Montpellier, France, we analyse current trends in statistical ecology. Important advances in the analysis of individual movement, and in the modelling of population dynamics and species distributions, are made possible by the increasing use of hierarchical and hidden process models. Exciting research perspectives include the development of methods to interpret citizen science data and of efficient, flexible computational algorithms for model fitting. Statistical ecology has come of age: it now provides a general and mathematically rigorous framework linking ecological theory and empirical data.


Asunto(s)
Ecología , Modelos Estadísticos , Animales , Biodiversidad
12.
PLoS One ; 8(7): e66753, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23843962

RESUMEN

Large-scale studies focused on the diversity of continental slope ecosystems are still rare, usually restricted to a limited number of diversity indices and mainly based on the empirical comparison of heterogeneous local data sets. In contrast, we investigate large-scale fish diversity on the basis of multiple diversity indices and using 1454 standardized trawl hauls collected throughout the upper and middle slope of the whole northern Mediterranean Sea (36°3'- 45°7' N; 5°3'W - 28°E). We have analyzed (1) the empirical relationships between a set of 11 diversity indices in order to assess their degree of complementarity/redundancy and (2) the consistency of spatial patterns exhibited by each of the complementary groups of indices. Regarding species richness, our results contrasted both the traditional view based on the hump-shaped theory for bathymetric pattern and the commonly-admitted hypothesis of a large-scale decreasing trend correlated with a similar gradient of primary production in the Mediterranean Sea. More generally, we found that the components of slope fish diversity we analyzed did not always show a consistent pattern of distribution according either to depth or to spatial areas, suggesting that they are not driven by the same factors. These results, which stress the need to extend the number of indices traditionally considered in diversity monitoring networks, could provide a basis for rethinking not only the methodological approach used in monitoring systems, but also the definition of priority zones for protection. Finally, our results call into question the feasibility of properly investigating large-scale diversity patterns using a widespread approach in ecology, which is based on the compilation of pre-existing heterogeneous and disparate data sets, in particular when focusing on indices that are very sensitive to sampling design standardization, such as species richness.


Asunto(s)
Biodiversidad , Peces , Animales , Simulación por Computador , Ecosistema , Geografía , Mar Mediterráneo , Modelos Teóricos , Densidad de Población
14.
C R Biol ; 334(1): 13-23, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21262482

RESUMEN

Echinocardium cordatum had long been considered as cosmopolitan, but molecular data revealed it is a complex of cryptic species, with two non-hybridizing species (B1 & B2) in the Mediterranean Sea living in syntopy with Echinocardium mediterraneum. Histological analyses of the gonads from a 17-month sampling period revealed a statistically significant time lag between the Maturity Indices of E. cordatum and E. mediterraneum. The main environmental stimulus may be different for the two nominal species, possibly seawater temperature for E. cordatum and chlorophyll a concentration for E. mediterraneum. Within the E. cordatum complex, spawning timing and synchrony are different according to major geographic areas (Atlantic/Pacific/Mediterranean) and/or the corresponding genetic subdivision [A/P/(B1 & B2)]. In contrast, the effects of temperature on the reproductive cycle seem rather to mirror the genetic lineages than environmental similarities of the different localities. Between the sister species (B1 & B2) no differences could be detected, maybe due to small sample sizes.


Asunto(s)
Equinodermos/fisiología , Reproducción/fisiología , Algoritmos , Animales , ADN/química , ADN/genética , Ambiente , Evolución Molecular , Femenino , Gametogénesis , Gónadas/crecimiento & desarrollo , Gónadas/fisiología , Masculino , Mar Mediterráneo , Polimorfismo de Longitud del Fragmento de Restricción , Agua de Mar , Especificidad de la Especie , Temperatura
15.
Ecology ; 91(6): 1850-9, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20583725

RESUMEN

Clustering methods are widely used tools in many aspects of science, such as ecology, medicine, or even market research, that commonly deal with dendrogram-based analyses. In such analyses, for a given initial dissimilarity matrix, the resulting dendrogram may strongly vary according to the selected clustering methods. However, numerous dendrogram-based analyses require adequate measurement for assessing of which of the clustering methods preserves most faithfully the initial dissimilarity matrix. While cophenetic correlation coefficient-based measures have been widely used for this purpose, we emphasize here that it is not always a suitable approach. We thus propose a measure based on a matrix norm, the 2-norm, to adequately check which of the resulting ultrametric distance matrices related to the dendrograms is the closest to the initial dissimilarity matrix. In addition, we also propose an objective way to define a benchmark value (threshold value) in order to assess whether the degree of conformity between the ultrametric distance matrix selected and the initial dissimilarity matrix is satisfactory. Our proposal may notably be incorporated within a recently proposed approach that involves the use of clustering methods in environmental science and beyond. In ecology, various functional diversity indices based on clustering species from their functional dissimilarities may benefit from this overall approach.


Asunto(s)
Ecosistema , Modelos Biológicos , Análisis por Conglomerados , Simulación por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...